Sonar Equation Problem Set #1

Note: Assume sound speed in water is 1500 ms⁻¹.

- 1) Convert the following levels into decibel units:
- a) 10 V = **20** dB_v
- b) 0.1 V = _____ **-20**__ dB_v
- d) 400 watts = _____ **26** __ dB || watt
- e) $0.2 \text{ watts/m}^2 = _____-7___ dB \parallel \text{ watt m}^{-2}$
- 2) Convert the following levels in dB into the appropriate linear units:
- a) 218 dB || μ Pa = ____**7.94 x 10**¹⁰___ μ Pa
- b) $-12 dB_v =$ _____ V
- c) $10 \text{ dB}_{v} =$ _____ V
- d) 40 dB || watt = _____**10,000**____ watts
- 3) Estimate the length in meters of a transmitted sound pulse traveling through the water column at pulse durations (or pulse lengths) of 3 ms, 1 ms, and 0.1 ms.

3ms = 4.5 meters 1 ms = 1.5 meters 0.1 ms = 0.15 meters (CT)

4) What is the wavelength in centimeters corresponding to a sound frequency of 38 kHz, 120 kHz, 200 kHz, and 420 Khz?

 $\lambda = c/f = 1500/38,000 \times 100 \text{cm/m} = 3.95 \text{ cm}$

120 kHz = 1.25 cm 200 kHz = 0.75 cm 420 kHz = 0.357 cm

5) Calculate the number of cycles in each transmission, given the following pulse durations and frequencies.

	Frequency (f)		
Pulse Duration	38 kHz	70 kHz	200 kHz
5 ms	190	350	1000
1 ms	38	70	200
0.2 ms	7.6	14	40

Complete number of cycles/transmission in each cell

6) For the three transmitted pulse durations (5, 1 and 0.2 milliseconds) given in Problem #4, estimate the minimum range in meters between two targets that would allow them to be resolved.

$r = c\tau/2 = (1500 *0.005)/2 = 3.75 m$, 1 ms = 0.75 m and 0.2 ms = 0.15 m

7) Given a requirement to resolve targets which are 30 or more cm apart, what is the maximum pulse duration in milliseconds that can be used?

Same formula as #6, solve for τ . 0.3 = (1500 * d)/2 \therefore 4E-04 sec, or 0.4 ms

8) An echo sounder receives the echo return from the sea bed exactly 0.5 sec after transmission. What is the bottom depth?

Travel time = r/c+r/c = 2r/c 2r/1500 = 0.5 r = (0.5*1500)/2 = 375 m

9) Given that we must allow sufficient time for a transmitted echo to return to the transducer before "pinging" again, what is the maximum transmission rate (in pings s⁻¹) at 60 meters depth?

Max Ping Rate = c/2r = 1500/(2*60) = 12.5 pps

10) Based on the nominal transducer beamwidths listed below, calculate the beam diameter (units meters) and the cross-sectional area (units m²) at each depth (i.e. the "footprint" of the beam).

Nominal Beam Angle	Depth (m)	Beam Diameter (m)	Beam Cross-sectional Area (m ²)
3 degrees	10	0.524	0.216
	50	2.620	5.393
	100	5.241	21.572
	200	10.482	86.286

Nominal Beam Angle	Depth (m)	Beam Diameter (m)	Beam Cross-sectional Area (m ²)
6 degrees	10	1.051	0.868
	50	5.255	21.691
	100	10.510	86.762
	200	21.021	347.049

Nominal Beam Angle	Depth (m)	Beam Diameter (m)	Beam Cross-sectional Area (m ²)
15 degrees	10	2.679	5.639
	50	13.397	140.973
	100	26.795	563.891
	200	53.590	2255.562

- 11) What is the reduction in the acoustic level of a transmitted signal on the acoustic axis (units decibels) at 100, 200 and 300 m from the transducer?
- a) Assuming no other sources of acoustic signal loss other than spreading.

$$TL = 20\log(r)$$
 $20\log(100) = 40 \text{ dB}$, $200 \text{ m} = 46 \text{ dB}$, $300 \text{ m} = 49.54 \text{ dB}$

b) Assuming an absorption coefficient of 0.1 dB m⁻¹, in addition to the spreading losses.

TL =
$$20\log(r) + \alpha r$$
 $20\log(100) + (0.1*100) = 50$ dB, 200 m = 66.02 dB, 300 m = 79.54 dB